In these examples, you'll need to type your information in boldface, and enter passwords wherever appropriate (that don't echo to the screen). To establish your new Certificate Authority:

hagbard@fnord:~/certs$ /usr/local/ssl/misc/CA.pl -newca
CA certificate filename (or enter to create)

Making CA certificate ...

Using configuration from /usr/local/ssl/openssl.cnf

Generating a 1024 bit RSA private key

...............++++++

......................................++++++

writing new private key to './demoCA/private/cakey.pem'

Enter PEM pass phrase:

Verifying password - Enter PEM pass phrase:

You are about to be asked to enter information that will be incorporated

into your certificate request.

What you are about to enter is what is called a Distinguished Name or a DN.

There are quite a few fields but you can leave some blank

For some fields there will be a default value,

If you enter '.', the field will be left blank.

Country Name (2 letter code) [AU]:US
State or Province Name (full name) [Some-State]:California
Locality Name (eg, city) []:Sebastopol
Organization Name (eg, company) [Internet Widgits Pty Ltd]:Illuminatus

 Enterprises, Ltd
Organizational Unit Name (eg, section) []:Administration
Common Name (eg, YOUR name) []:Hagbard Celine
Email Address []:hagbardceline1723@yahoo.com
Congratulations. You're the proud owner of your very own Certificate Authority. Take a look around:

hagbard@fnord:~/certs$ ls
demoCA/

hagbard@fnord:~/certs$ cd demoCA/
hagbard@fnord:~/certs/demoCA$ ls -l
total 24

-rw-r--r-- 1 rob users 1407 Sep 8 14:12 cacert.pem

drwxr-xr-x 2 rob users 4096 Sep 8 14:12 certs/

drwxr-xr-x 2 rob users 4096 Sep 8 14:12 crl/

-rw-r--r-- 1 rob users 0 Sep 8 14:12 index.txt

drwxr-xr-x 2 rob users 4096 Sep 8 14:12 newcerts/

drwxr-xr-x 2 rob users 4096 Sep 8 14:12 private/

-rw-r--r-- 1 rob users 3 Sep 8 14:12 serial
The public key for your new Certificate Authority is contained in cacert.pem, and the private key is in private/cakey.pem. You can now use this private key to sign other SSL certs.

To use your CA's authority to sign SSL certs, you'll need to make a new cert that a web server (such as Apache) can use. First, generate a private key and certificate request (see man CA.pl or my book, Linux Server Hacks). Now you can sign the new request with your own CA's key:

hagbard@fnord:~/certs$ openssl ca -policy policy_anything \

 -out propaganda.discordia.eris.crt \

 -infiles propaganda.discordia.eris.csr
Using configuration from /usr/local/ssl/openssl.cnf

Enter PEM pass phrase:

Check that the request matches the signature

Signature ok

The Subjects Distinguished Name is as follows

countryName :PRINTABLE:'US'

stateOrProvinceName :PRINTABLE:'Texas'

localityName :PRINTABLE:'Mad Dog'

organizationName :PRINTABLE:'Discordia, Inc.'

organizationalUnitName:PRINTABLE:'Operations'

commonName :PRINTABLE:'propaganda.discordia.eris'

emailAddress :IA5STRING:'hail@discordia.eris'

Certificate is to be certified until Sep 8 22:49:26 2003 GMT (365 days)

Sign the certificate? [y/n]:y
1 out of 1 certificate requests certified, commit? [y/n]y
Write out database with 1 new entries

Data Base Updated
Now, to use the .crt and .key with Apache + mod_ssl (or Apache-ssl), install them as you normally would (perhaps with lines like these):

SSLCertificateFile /usr/local/apache/conf/ssl.crt/propaganda.discordia.eris.crt

SSLCertificateKeyFile /usr/local/apache/conf/ssl.key/propaganda.discordia.eris.key
This is all lots of fun, but what happens when a client actually connects to https://propaganda.discordia.eris/? Won't the browser throw an error about not recognizing the Certificate Authority that signed the SSL cert? Naturally. Unless, of course, you've installed your CA's public key to the client browser ahead of time. Check back for my next article (or, if you can't wait that long, check out the book).

Disclaimer: No, I honestly had nothing to do with the "Microsoft Corporation" cert snafu. But it does illustrate one of the fundamental facts of life online: It's difficult to know who to trust.

Similarly, here is a little summary, from https://www.thawte.com/support/keygen/index.html on generating the CSR/private key:

The utility "openssl" that you use to generate the key and CSR comes with OpenSSL and is usually installed under /usr/local/ssl/bin. If you have installed them elsewhere you will need to modify these instructions appropriately.

The following sequence of commands will generate a 1024 bit key, encrypt it using the triple-DES cipher, and create a CSR based upon it (they assume that you have openssl in your path - if not then you should prefix the openssl command with the path to the binary). You should use the domain name that you are wishing to have certified as the core of the filenames. You should also make sure you do NOT overwrite existing keys and CSR's:

Step 1. Go to your SSL directory
cd /usr/local/ssl/private

Step 2. Generate a private key
openssl genrsa -des3 1024 > www.thawte.com.key
Now PLEASE backup your www.thawte.com.key and make a note of the passphrase. Losing your key will cost you money!

Step 3. Go to your certs directory
cd /usr/local/ssl/certs

Step 4. Generate a CSR from your key
openssl req -new -key ../private/www.thawte.com.key > www.thawte.com.csr

Step 5. Generate a self-signed certificate
openssl req -x509 -key ../private/www.xxx.com.key -in www.thawte.com.csr > www.thawte.com.crt
NOTE: When asked for your Common Name, enter the exact domain name of your web server you want to secure (i.e. "www.thawte.com" or "secure.thawte.com"). The prompt on some standard OpenSSL distributions asks for "YOUR name", this is your Common Name

While TclHttpd can support SSL, you will need to add a number of

software components to complete your SSL server.

At the base is either RSAREF or OpenSSL. Within the United States there are

patent restrictions that limit you to using RSAREF from RSA Inc. Actually,

you can also build OpenSSL with a "no patents" option. Both of these packages

create a crypto library with the same interface.

http://www.rsa.com

http://www.openssl.org

Next comes the "TLS" Tcl extension, which uses the crypto library.

The development home page for TLS is

 http://sourceforge.net/projects/tls/

I have used the 1.4.1 version for a number of years, although

there is a recent 1.5.0 version. At SourceForge there are

binary releases for Linux and Solaris that save you the chore

of building OpenSSL.

If you can run tclsh and

 package require tls

then you are almost ready to go.

Finally you need keys and certificates for your server. OpenSSL comes with

a command-line utility called "openssl" that you can use to generate keys

and certificates. The RSFREF utility is "sslc", but provides essentially

the same features. The general process is that you generate a public-private

key pair (using the "genrsa" command for sslc or openssl)

 sslc genrsa -out skey.pem

Next you create a certificate request

 sslc req -config /path/to/ssl.cnf -new -nodex -out ./server.pem -key ./skey.pem

and send this to a certificate authority for signing.

One example Certificate Authority is

 http://www.verisign.com

Once you get the signed certificate back, edit the tclhttpd.rc file so they

accurately record the location of your keyfile and certificate.

The server should then be able to listen for SSL connections on the https port.

You can also bootstrap yourself into your own CA by following the steps

outlined below. This lets you sign your own certificate requests to

make valid certificates, but browsers will prompt users to validate the

key when they visit your site.

You'll need the "openssl" command line utility that's

built when you build openssl. Here is what I did with

openssl-0.9.7d

0. Build and install openssl. It installs into /usr/local/ssl

 I left the openssl.cnf file unchanged, and created a sub-directory

 to hold all the CA (certificate authority) stuff, as

 /usr/local/ssl/demoCA.

1. Use the "misc/CA.sh" script as a front-end for the "openssl ca"

 command, which needs to be set up correctly.

 First, we initialize the CA:

 misc/CA.sh -newca

 The -newca script does two things, approximately:

 (If you ran misc/CA.sh -newca, then you don't need to do 1(a, b, c)

 1(a). generate a private key for your test CA

 cd /usr/local/ssl

 bin/openssl genrsa -out demoCA/private/cakey.pem

 1(b). build a certificate request

 bin/openssl req -x509 -nodes -out demoCA/cacert.pem -key demoCA/private/cakey.pem -new

 1(c). create a serial, index.txt, and other empty directories expected

 by the ca subcommand of openssl

 You've now got a CA certificate "cacert.pem".

 It's "self-signed".

 Its private key is "private/cakey.pem".

We'll now make a server key, certificate request,

and we'll use the CA cert we just made to sign it

and generate our final certificate. (I couldn't get the

CA.sh front-end to work for me in this case, so I did

the following commands directly.)

2. generate a server key

 bin/openssl genrsa -out key1.pem

3. generate a certificate request

 bin/openssl req -nodes -out req.pem -key key1.pem -new

4. generate the server certificate

 bin/openssl ca -keyfile demoCA/private/cakey.pem \

 -cert demoCA/cacert.pem -in req.pem

Because I didn't use "-out", the cert was generated into

demoCA/newcerts as 01.pem (or 02.pem, ...)

You've now got a server certificate "demoCA/newcerts/01.pem".

Its private key is key1.pem.

It's signed by your own CA.

You can make any number of certs by repeating steps

two through four again with different file names.

To set up tclhttpd, copy the key and the cert into the

tclhttpd/certs subdirectory. E.g.,

cd /usr/local/tclhttpd-3.5.1/

mkdir certs

cp /usr/local/ssl/key1.pem certs/skey.pem

cp /usr/local/ssl/demoCA/newcerts/02.pem certs/server.pem

It appears that the default location for the certs directory

is a "bin/certs", a subdirectory of the bin directory. If

you want to change that, edit bin/tclhttpd.rc and fix

the SSL_CADIR setting.

Have you set up the CA keys yet?

bash# ./CA –newca

That should generate a new private key and certificate, initialise the serial number counter and certificate "database".

Files:

./demoCA/cacert.pem – the CA root certificate

./demoCA/private/cakey.pem – the CA root private key.

./demoCA/index.txt – database of certificates signed by the CA root certificate.

./demoCA/index.txt.old – backup database of certificates signed by the CA root certificate.

./demoCA/serial – contains the next serial number to use as ASCII text.

./demoCA/serial.old – backup of the next serial number to use as ASCII text.

./demoCA/newcerts – copy of all certificates signed by the CA root certificate. The file name is the certificate serial number.

./demoCA/newcerts/01.pem – copy of first certificate signed. etc.

./demoCA/crl/crl.pem – certificate revocation list.

